Unit 7 Outline – Volume

Wednesday 11/20 Today's Topic: Area - Using the Graphing Calculator
In-Class Examples: A graphing calculator must be used for these problems. Find the area of the region(s) enclosed by the graphs of the given functions.
Ex. 1 $y = x^2$ and $y = x + 6$
Ex. 2 $y = e^{x^2} - 1$ and $y = 4x$
Ex. 3 $y = \sin(\pi x)$ and $y = x^3 - 4x$
AP Multiple Choice
What is the area of the region enclosed by the graphs of $y = e^x - 2$, $y = \sin x$, and $x = 0$?
(A) 0.239 (B) 0.506 (C) 0.745 (D) 2.340 (E) 3.472
What is the area of the region enclosed by the graphs of $y = \sqrt{4x - x^2}$ and $y = \frac{x}{2}$?
(A) 1.707 (B) 2.829 (C) 5.389 (D) 8.886 (E) 21.447
Homework: None
Thursday 11/21 Today's Topic: Volumes by Cross Sections - $V = \int_{a}^{b}$ Area of Cross Sections
In-Class Examples: Ex. 1 *Calculator Required* Let <i>R</i> be the region in the first quadrant bounded by the graphs of $f(x) = \sin x$ and
$g(x) = x^2 - 2x + 1.$
 (a) Find the area of region <i>R</i>. (b) Region <i>R</i> forms the base of a solid whose cross-sections are squares taken perpendicular to the <i>x</i>-axis. Find the volume of this solid.
Ex. 2 Let <i>R</i> be the region bounded by the graphs of $y = x+1$ and $y = x^2 - 1$. Find the volume of the solid whose base is the region <i>R</i> , with the indicated cross sections taken perpendicular to the <i>x</i> -axis:
(a) Squares (b) Rectangles of height 1 (c) Semicircles
Homework: Worksheet 59

Friday 11/22	Today's Topic Volumes by Cross Sections - $V = \int_{a}^{b}$ Area of Cross Sections
In-Class Examples:	
Find the volume of t	he solid whose base is the region in the first quadrant bounded by the graphs of $y = x^2$, $y = 1$ and the y-axis
with the indicated cr	oss sections taken perpendicular to the x-axis:
(a) Squar	res (b) Semicircles (c) Equilateral Triangles
AP Multiple Choice	
1	
The base of a solid	I is the region bounded by the x-axis and the graph of $y = \sqrt{1 - x^2}$. For the solid, each cross
	and the graph of $y' = x' + 1$ of the solid, each cross all are graph of $y' = x' + 1$ of the solid, each cross all are to the x-axis is a square. What is the volume of the solid?
1 1	-
(A) $\frac{2}{2}$ (B)	$\frac{4}{3}$ (C) 2 (D) $\frac{2\pi}{3}$ (E) $\frac{4\pi}{3}$
3	3
Homework: Worksh	eet 60

	Today's Topic: Volumes of Solids Formed by Rotation (Disks and Washers)
Review: Let <i>R</i> be the r	egion enclosed by the graphs of $y = \sqrt{x}$, $y = 0$, and $x = 4$.
(a) Find the area (
(b) Region <i>R</i> form volume of this	is the base of a solid. Cross-sections of this solid, taken perpendicular to the x -axis are squares. Find the solid.
In-Class Examples:	
Ex. 1 Let R be the regi	on enclosed by the graphs of $y = \sqrt{x}$, $y = 0$, and $x = 4$. Find the volume of the solid
	evolving the region R about the x-axis.
Ex. 2 Let R be the regi	on enclosed by the graphs of $y = \sqrt{x}$, $y = 0$, and $x = 4$. Find the volume of the solid
generated by r	
	evolving the region R about the horizontal line $y = -3$.
Ex. 3 Let R be the regi	evolving the region R about the horizontal line $y = -3$. on enclosed by the graphs of $y = \sqrt{x}$, $y = 0$, and $x = 4$. Find the volume of the solid

Today's Topic: Volumes of Solids Formed by Rotation (Disks and Washers)

AP Multiple Choice

P

A vase has the shape obtained by revolving the curve $y = 2 + \sin x$ from x = 0 to x = 5 about the *x*-axis, where *x* and *y* are measured in inches. What is the volume, in cubic inches, of the vase? (A) 10.716 (B) 25.501 (C) 33.666 (D) 71.113 (E) 80.115

A~

Let *R* be the region bounded by the graphs of $y = e^x$, $y = e^3$, and x = 0. Which of the following gives the volume of the solid formed by revolving *R* about the line y = -1?

(A) $\pi \int_0^3 (e^3 - e^x + 1)^2 dx$
(B) $\pi \int_0^3 (e^3 - e^x - 1)^2 dx$
(C) $\pi \int_0^3 \left[\left(e^3 - e^x \right)^2 + 1 \right] dx$
(D) $\pi \int_0^3 \left[\left(e^3 - e^x \right)^2 - 1 \right] dx$
(E) $\pi \int_0^3 \left[\left(e^3 + 1 \right)^2 - \left(e^x + 1 \right)^2 \right] dx$

Homework: Worksheet 61

Today's Topic: Volumes of Solids Formed by Rotation (Disks and Washers) - vertical line

In-Class Examples:

	the region enclosed enerated by revolvir			e y-axis. Find the volume of the
0	•	0 0	•	$= x^2$ and $y = 4$. Find the volume of the solid
generat	ed by revolving the	region R about the	line $x = -2$.	
AP Multiple Ch	noice			
A →				
	blume of the solid $= 5$ is revolved all	-	he region bounded	by the graph of $x = \sqrt{y-2}$ and the lines
(A) 3.464	(B) 4.500	(C) 7.854	(D) 10.883	(E) 14.137
Homework: Wo	orksheet 62			

	Today's Topic: Area and Volume Review	
In-Class Examples: None		
Homework: Worksheet 63		

In-Class Examples: Let <i>R</i> and <i>S</i> be	
	the regions in the first quadrant shown in the figure at right. The region R is bounded by the z
axis and the graphs of $y =$	$2 - x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of
$y = 2 - x^3$ and $y = \tan x$.	
-	enerated when S is rotated around the x-axis. blid whose cross-sections are squares ind the volume of this solid. $y = \tan x$
Homework: Worksheet 64	

Tuesday 12/10	Today's Topic: Area and Volume Review
In-Class Examples: No	ne
Homework: Worksheet 65	

Wednesday 12/11	Today's Topic: Area and Volume Test
In-Class Examples: No	ne
Homework:	